On the minimization over SO(3) Manifolds
نویسنده
چکیده
In almost all image-model and model-model registration problems the question arises as to what optimal rigid body transformation applies to bring a physical 3-dimensional model in alignment with the observed one. Data may also be corrupted by noise. Here I will present the exponential and quaternion representations for the SO(3) group. I will present the technique of compounding derivatives and demonstrate that it is most suited for dealing with numerical optimization problems that involve rotation groups.
منابع مشابه
On the convergence of solutions to a difference inclusion on Hadamard manifolds
The aim of this paper is to study the convergence of solutions of the following second order difference inclusion begin{equation*}begin{cases}exp^{-1}_{u_i}u_{i+1}+theta_i exp^{-1}_{u_i}u_{i-1} in c_iA(u_i),quad igeqslant 1\ u_0=xin M, quad underset{igeqslant 0}{sup} d(u_i,x)
متن کاملMinimization on the Lie Group SO(3) and Related Manifolds
This paper presents a novel approach to carrying out numerical minimization procedures on the Lie Group SO(3) and related manifolds. The approach constructs a sequence of local parameterizations of the manifold SO(3) rather than relying on a single global parameterization such as Euler angles. Thus, the problems caused by the singularities in these global parameterizations are avoided. This res...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملMinimization on the Lie GroupSO ( 3 ) and Related
This paper presents a novel approach to carrying out numerical minimization procedures on the Lie Group SO(3) and related manifolds. The approach constructs a sequence of local parameterizations of the manifold SO(3) rather than relying on a single global parameteri-zation such as Euler angles. Thus, the problems caused by the singularities in these global parameterizations are avoided.
متن کاملOn Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کامل